

未来の科学者養成講座 大型放射光施設 SPring-8と放射光科学

(財)高輝度光科学研究センター (JASRI/SPring-8) 利用研究促進部門 河村 直己

本日の内容(1時間目)

- 1. 自己紹介
- 2. SPring-8について
- 3. 放射光発生の歴史

本日の内容(2時間目)

- 4 放射光発生の原理
- 5. X線の検出方法

本日の内容(3時間目)

- 6. X線を導く(ビームライン)
- 7. 放射光を利用した研究紹介
- 8. 研究者への道のり
- り、まとめ

河村 直己 (かわむら なおみ)

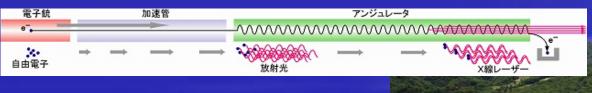
岡山県倉敷市出身

SPring-8の研究者

第18回 SPring-8 施設公開 ~ たんけん 発見、科学の最先端!~

- 2010年4月29日(木・祝) 9:30 - 16:30

第18回 SPring-8 施設公開 ~ たんけん - 発見、科学の最先端!~


- □ 2010年4月29日(木・祝) 9:30 16:30
 - 科学講演会
 - インフルエンザウイルスへの挑戦 朴 三用 氏 (横浜市立大学), 10:30~10:55 / 13:00~13:25
 - Small is better? ナノテクで安全/高性能なバッテリーへの道 牧浦 理恵 氏 (九州大学), 11:00~11:25 / 13:30~13:55
 - ガムで歯の健康に迫る ~むし歯の無い社会の実現に向けて~ 田中 智子 氏 (江崎グリコ), 11:30~11:55 / 14:00~14:25
 - セメントを透明半導体, 金属, そして超伝導体に変身させる 細野 秀雄 氏 (東京工業大学), 12:00~12:25 / 14:30~14:55

第18回 SPring-8 施設公開

~ たんけん 発見、科学の最先端!~

- □ 2010年4月29日(木・祝) 9:30 16:30
 - 国家基幹プロジェクト: X線自由電子レーザー (理化学研究 所, 建設中) の公開 (今回が最後の機会)

- 見学ツアー(事前申込不要)
- 科学実演・工作, パネル展示など (内容未定)

Webサイト: http://www.spring8.or.jp/openhouse/

携帯サイト: http://www.spring8.or.jp/i/ja/open10/

2010/1/30 (土) 岡山大学

数値について

漢数詞	値	
垓	1020	
京	10 ¹⁶	
兆	1012	T (テラ)
十億	10 ⁹	G (ギガ)
百万	10 ⁶	M (メガ)
千	10 ³	k (キロ)
百	10 ²	
+	10	
_	1	

漢数詞	値	
分	10-1	d (デシ)
厘	10-2	c (センチ)
毛	10 -3	m (ミリ)
糸	10-4	
微	10 ⁻⁶	μ (マイクロ)
塵	10 -9	n (ナノ)
漠	10-12	p (ピコ)
須臾	10-15	f (フェムト)
刹那	10 -18	a (アト)

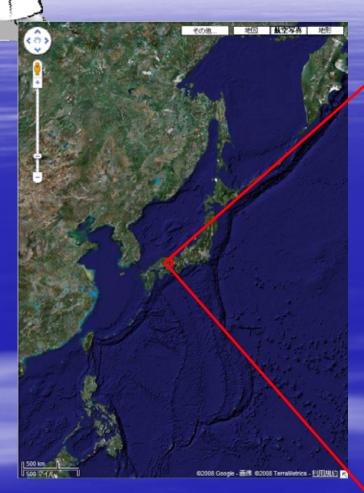
 $10^8 = 100,000,000$

 $10^{-9} = 0.000000001$

SPring-8について

大型放射光施設 SPring-3とは?

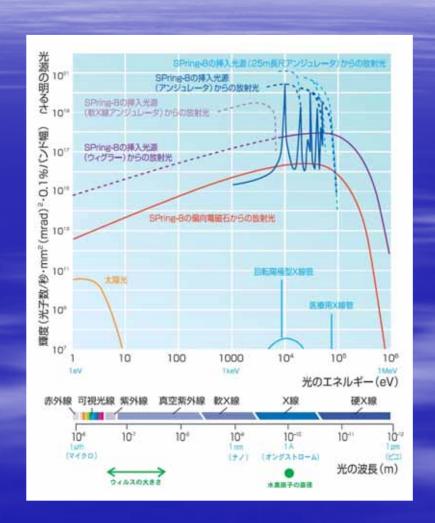
- Super Photon ring 8 GeV
 - とってもすごい光を出す施設
 - <mark>- Super <u>超</u>高性能の</mark>
 - Photon 光子
 - ring 蓄積リング
 - 電子エネルギーが 8 GeV (世界最高)
 - 電子の速度は光速の 99.9999998% (1秒間に約30万km進む, 1秒あたり蓄積リング20.8万周以上)


どこにあるの?

実際の光景(2010年1月現在)

Google マップより http://maps.google.co.jp/

実際の光景(2008年10月現在)



・放射光の特長

- 極めて明るい
- 細く絞られ拡がりにくい
- X線から赤外線までの広波長領域をカバー
- 偏光特性
- 短パルス光

- SPring-8の特長

- 低エミッタンス
- 高輝度
- 挿入光源を多数設置可能 (38台)
- 蓄積リングに長直線部が4つ
- 中尺 (200 m), 長尺 (1 km) ビー ムラインを設置可能

第3世代放射光施設

■ 専用光源である挿入光源を多数設置できる

ESRF(フランス)

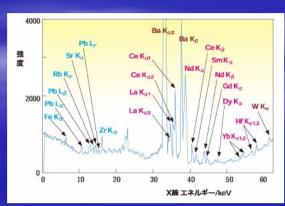
- ヨーロッパ12カ国
- ・電子エネルギー 6 GeV

APS(アメリカ)

- ・アルゴンヌ国立研究所
- ・電子エネルギー 7 GeV

SPring-8(日本·兵庫県)

- · 理研·原研·JASRI
- ・電子エネルギー 8 GeV



和歌山毒物カレー事件

- 1998年7月25日
- カレーを食べた 67 人が病院へ搬送, うち 4 人死亡
- 和歌山県地方検察庁が被告人宅で検出された亜ヒ酸とカレー に混入された亜ヒ酸の同一性確認を分析化学者に依頼
- SPring-8 BL08W / BL39XU, KEK-PF において、X線蛍光分析を用い、カレーに含まれていた亜ヒ酸(砒素)の不純物元素を分析

どんなことができるの?

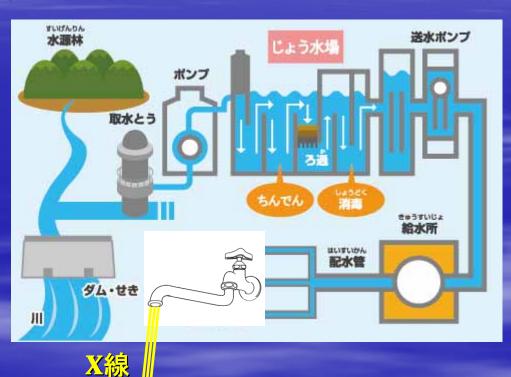
- X線 (短波長) そのものを利用
 - 物質内部の構造, 原子配列の決定
- 放射光の強度を利用
 - 物質内部のイメージング
- 放射光の指向性を利用
 - 微小物質(ナノ構造), 微小領域の分析, 微細加工
- 放射光の波長可変性を利用
 - 元素分析, 元素選択的な電子状態の決定
- 放射光のパルス性を利用
 - □物質の時間的変化過程

パルス

- ✓ 短時間の間に急峻な変 化をする信号のこと
- ✓ 連続信号ではないこと

放射光発生の歴史

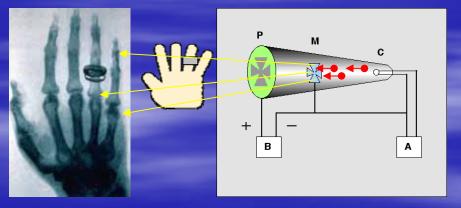
究極の光を目指して! ~ 理想のX線とは? ~



X線は湯水の如く...

- X線を使うと、色んなコトがわかりそう
- これまでのX線発生装置では、できることが限られていた
- もっと強いX線源があるといいかも
- 湯水のようにジャバジャバ 出るとうれしいよね

測定試料


そもそも ※線って?

- 1895年11月8日:
 - W. C. Röntgen (レントゲン) によるX線の発見
- 見えないものが見える? → 正体不明の線(光) → X線!
- 放電管と蛍光板の間に手を入れると手の骨の影が見えた!

第1回 ノーベル物理学賞受賞 (1901)

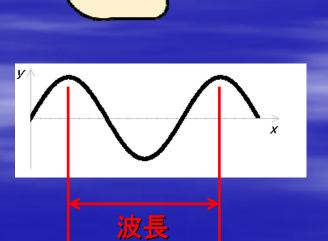
W. C. Röntgen

身体の中を透かして見たい! → 多くの医師によるX線撮影法の開発

↑レントゲンの奥様の手の骨格

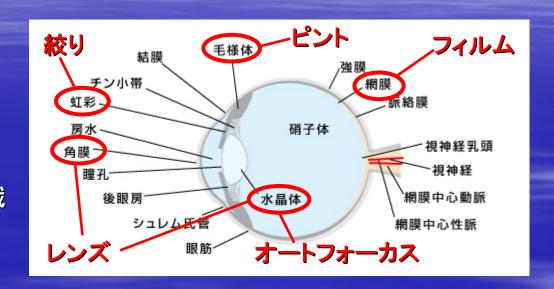
何敬, X線?

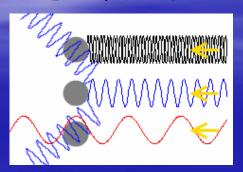
 $\rightarrow \blacksquare$



- 人が「観測」する手法
 - 見る → 10 個/秒の情報
 - 聞く → 104個/秒の情報 → 耳
 - 触る → 102 個/秒の情報 → 皮膚
 - 嗅ぐ
 - 味わう

- X線の特徴
 - 波長が短い = エネルギーが高い


2010/1/30 (土) 岡山大学



物を見るとは?

- 生物学的には...
- 光(可視光):角膜 → 水晶体 → 網膜
- 情報:目 → 視神経 → 脳 → 認識

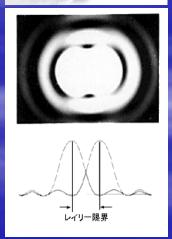
- 物理学的には...
- 光の波長で見ることができる物の大きさが決まる
 - 波長が短いほど散乱されやすい
 - 散乱される → 何かある!
- 光 = 電磁波 → 電荷との相互作用
 - 回折, 散乱, 干涉, 反射, ...



人は何でも見たがる

- バナナが黄色いのは?
 - □ 波長 380 (紫) ~ 500 (緑) nm の光: バナナが吸収
 - 波長 500 (緑) ~ 780 (赤) nm の光: バナナが散乱
 - → 目に入って「黄」と識別
 - 個体差, 個人差あり
 - <u>■ ただし、経験と</u>常識で決まる
- バナナとりんごの違いは?
 - □ 外見の違い
 - □組織の違い
 - 構成元素の違い
 - 数値化 (= 共通化) する → 科学

どんな形でも, 結局は可視化



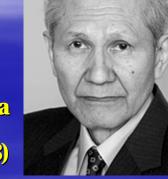
- 見えないモノを見たくなるのが人の心情
- 科学者的心理: 誰よりも早く見たい (知りたい)
- 光学顕微鏡の空間分解能: Rayleigh の定義

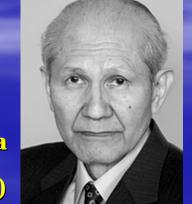
$$\Delta x = k \cdot \frac{\lambda}{NA} \approx 0.61 \frac{\lambda}{NA}$$

- 開口数: NA = 0.9
- 可視光の最短波長: $\lambda_{\min} = 380 \text{ nm}$ (紫)
- **□** 空間分解能: ∠x = 258 nm = 0.253 μm 可視光では、原子は見えない!
- 物質を作っている原子と原子の距離≤1 nm

どんな形でも、結局は可視化

- 結局,物質を構成している原子や分子を見たいなら、 波長の短い光 = X線
 を使うしかない!
- 放電管のような発生方法では、X線強度が弱すぎる!
- 何か別の方法は?
- 見えない光! 危ない光(被爆)!
 - X線の発生方法は?
 - X線の検出方法は?
 - X線を操る(導く)方法は?


光の発生方法


注目の的間違いなし



- □ 太陽,恒星
- ロウソク,ランプ,ガスコンロ
- 電球 (白熱電球, 懐中電灯)
- 蛍光灯 (放電管)
- 発光ダイオード (LED)
- 有機 EL 液晶
- ホタル、ちょうちんアンコウ、イカ、クラゲ
- 放射光施設 などなど

O. Simomura ノーベル化学賞 (2008)

 $2010/1/30(\pm)$ 岡山大学

X線の発生方法

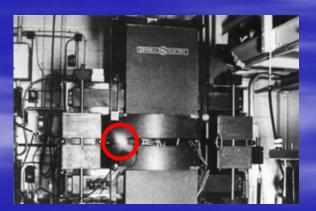
LETTERS

- 電子を加速して、金属に衝突させる
 - X 線管
 - 電子遷移を利用
- 電子を加速して、急激に曲げる
 - 放射光, X 線管
 - □ 制動放射を利用
- 高温プラズマを利用する
 - ■レーザー等を利用
- セロテープを剥がす???
 - 真空中で3 cm/s で剥がす

Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape Carlos G. Camara^{1*}, Juan V. Escobar^{1*}, Jonathan R. Hind¹ & Seth J. Putterman³ motion between two contacting surface can produce in proling tape, we employed officient high-good &-say detection visible light, railed tribelominescence". This concentration of difhave mechanical energy into electromagnetic radiation has prewe report that porting common adhesive tops in a maderate vacuum produces radio and visible resission¹⁸, along with name oling route, for the abserted 13-keV peak in X-ray energy f X-ray telbuluminessense allowed no to use if an a senate fo Pulse energy (GeV)

C. G. Camara, et al., Nature 455 (2008) 1089.

2010/1/30(土) 岡山大学



放射光の発生の歴史

- 1945年: General Electric (GE) 社 (USA), 100 MeV ベータト ロンで放射光を間接的に観測
- 1946年: 粒子(電子)加速器でのエネルギー損失を放射光によ る損失と予測 (放射光は邪魔者扱い!)
- 1947年: GE 社 の 70 MeV シンクロトロンで世界初の放射光 の観測

100 MeV ベータトロン

70 MeV シンクロトロン

第1世代放射光施設(?)の登場

- 1950~1970年代: 第1世代放射光施設(?)
 - 放射光の特性が優れていることを理論的に認識
 - 素粒子実験で用いられる加速器 (円形電子加速器, 電子-陽電子コライダーなど) に寄生した放射光利用
- 1963年: 世界初の放射光利用実験 (180 MeV シンクロトロン)
- 1975年: 世界初の放射光専用施設 SOR-RING の運転開始

- ▶ 東京大学物性研究所·軌道放射物性研究施設 (東京都田無市(西東京市))
- > 1997 年に役目を終了
- ▶ 現在, SPring-8 普及棟に展示中

T. Sasaki, J. Synchrotron Rad. <u>5</u> (1998) 140.

2010/1/30 (土) 岡山大学

第2世代放射光施設

- □ 1980年代: 第2世代放射光施設 = 放射光専用施設
 - 挿入光源ウィグラー, アンジュレータの利用
- 1983年: つくばの Photon Factory (PF) 運転開始

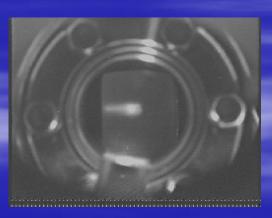
Google マップより http://maps.google.co.jp/

第2世代から第3世代へ

- 1990年代: 第3世代放射光施設の登場
 - □ 挿入光源主体の放射光施設
 - 低エミッタンス・リング

Google マップより http://maps.google.co.jp/

- 1993年: Advanced Light Source (ALS, USA) 運転開始
- 1994年: European Synchrotron Radiation Facility (ESRF, France) 運転開始 (ヨーロッパ?カ国連合体)
- 1996年: Advanced Photon Source (APS, USA) 運転開始
- 1997年: SPring-8 (日本) 運転開始



- 1996年08月01日: 線型加速器での初ビーム (60 MeV)
- 1996年08月08日: 線型加速器 1 GeV 運転
- 1996年12月10日: シンクロトロンで電子を1周(1 GeV)
- 1996年12月17日: シンクロトロン 8 GeV 運転
- 1997年03月26日: SPring-8 最初の放射光発生に成功!

線型加速器

シンクロトロン

蓄積リング(放射光)

そして第4世代へ

- 2000年代: 第 4 世代放射光施設 (X線自由電子レーザー, XFEL)
 - 線型加速器をベースとした光源
 - 極限を追求 (回折限界リング)
 - 超短パルス, コヒーレンス
- 2009年: LCLS (USA) 3 km, 400億円
- 2010年: XFEL/SPring-8(日本) 750 m, 400億円
- 2014年: E-XFEL (ドイツ)3.4 km, 1200億円

XTEL の比較

Ī		LCLS	scss	European XFEL
	Abbreviation for	Linac Coherent Light Source	Spring-8 Compact SASE Source	European X-Ray Free- Electron Laser
	Location	California, USA	Japan	Germany
	Start of commissioning	2009	2010	2014
	Accelerator technology	normal conducting	normal conducting	superconducting
	Number of light flashes per second	120	60	30 000
	Minimum wavelength of the laser light	0.15 nanometres	0.1 nanometres	0.1 nanometres
	Maximum electron energy	14.3 billion electron volts (14.3 GeV)	6-8 billion electron volts (6-8 GeV)	17.5 billion electron volts (17.5 GeV)
	Length of the facility	3 Kilometer	750 Meter	3.4 Kilometer
	Number of undulators (magnet structures for light generation)	1	3	5
	Number of experiment stations	3-5	4	10
	Peak brilliance [photons / s / mm² / mrad²/ 0.1% bandwidth]	8.5·10 ³²	5·10 ³³	5·10 ³³
	Average brilliance [photons / s / mm² / mrad²/ 0.1% bandwidth]	2.4·10 ²²	1.5-10 ²³	1.6-10 ²⁵

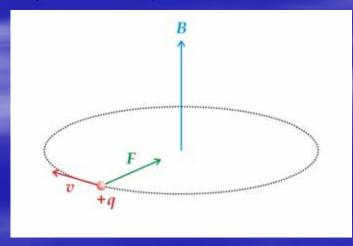
SPring-8 は明るい?

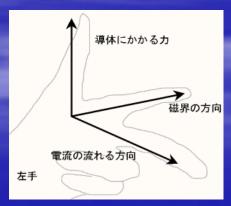
- 光を粒子として勘定すると...
 - 太陽の光: 地球上では 6 x 10²¹ 個/m²/秒
 - SPring-8 の光: 2.2 x 10²¹ 個/mm²/mrad²/0.1%b.w./秒
- 光のパワーに直してみると...
 - 太陽の総輻射量: 3.85 x 10²³ kW
 - SPring-8 BL19LXU: 33 kW
- □ 地球の受ける輻射量: 1.37 kW/m²
- SPring-8 BL19LXU のパワー密度: 1.92 kW/mm²

SPring-8 などの放射光施設が「明るい」というのは, 光の「密度 (= 輝度) が高い」ことを意味する

放射光の発生から利用まで

放射光に関係した基礎知識

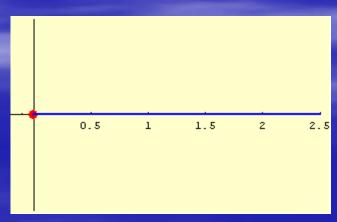



荷電粒子と磁場

- 磁場中の荷電粒子の運動
 - ローレンツカ: 電磁場中で運動する荷電粒子が受ける力

$$F = q(\vec{E} + \vec{v} \times \vec{B})$$

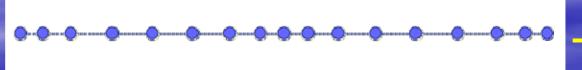
- 電場中では、電場の向きに沿って運動する
- □ 磁場中では, 進行方向と垂直な力を受ける


フレミングの左手の法則

波の基本

- 波とは?
- 物質のある点での振動が、それに隣接する部分の運動を引き起こし、その振動が次々と伝えられていく現象
- すなわち、「波」という現象を起こすには、それを伝える「何か」 が存在しなければならない
- □ 「何か」=「**媒質**」

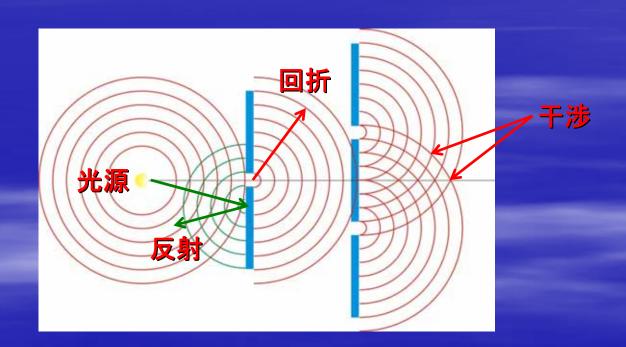



波の基本

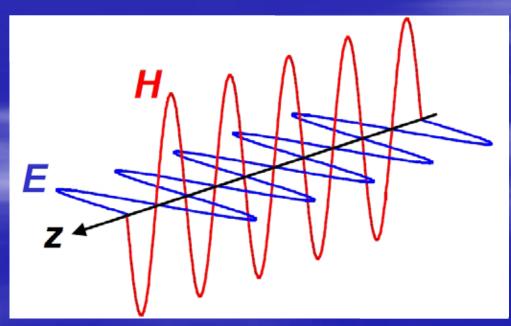
- □ 例外が一つ...
- 光は「媒質」がなくても伝わる「横波」である (要するに、真空中を伝わる波である)
 - 横波:波の進行方向と垂直な方向に振動する

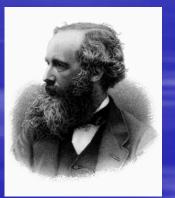
波の進行方向

□ 縦波:波の進行方向と平行な方向に振動する

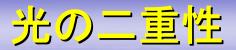

波の進行方向

- 「波」の基本現象
- □ 回折, 散乱, 屈折, 反射, 干渉, ドップラー効果

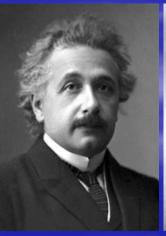




- 光 (= 電磁波) も波なので, 基本は同じ
- □「電場」と「磁場」が互いに直交し、その振動が伝播する
- 1864年: J. C. Maxwell が電磁波の存在を予言
- 1888年: H. R. Hertz が電磁波の存在を実証


H. R. Hertz

J. C. Maxwell



- 光の二重性:「波動性」と「粒子性」
 - 光は「波」であり,「粒子」でもある
 - A. Einstein の光量子仮説 (1921)
 - L. de Broglie の物質波の考え (ノーベル賞, 1929)
- 一般に、全ての物質は粒子的な性質と波動的な性質をもつ

Einstein - de Broglieの関係式

エネルギー
$$E = h v$$

$$p = \frac{h}{\lambda}$$

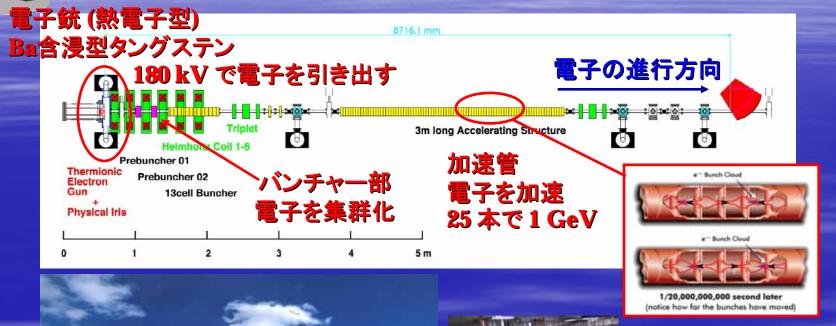
A. Einstein

L. de Broglie

放射光 (= 電磁波)

- □ 「放射光」も光と同じ電磁波の一種
 - 電子の運動から放出される「光 (電磁波)」である
 - 色々な波長の光を含んでいる
- 放射能, 放射線, 放射光
 - ■「放射能」とは、放射線を出す「能力」を示す言葉
 - ■「放射能漏れ」という表現はおかしい
 - 「放射線」とは、放射性物質などの原子核崩壊のときに放出 される α線(ヘリウム原子核)、β線(電子)、γ線(電磁波)等を 意味する
 - ■「放射線」と「放射光」は、現象として異なるものである

放射光の発生原理


放射光を利用するまで

- 放射光の発生: 加速器
 - 電子の発生 → 加速 → 蓄積 → ぐいっと曲げる → 放射光
- 放射光の形成: ビームライン
 - 放射光 → (エネルギーの切り出し) → 成形 → 試料
- 放射光の利用: 実験ステーション
 - 実験環境の整備 → 位置合わせ → 検出器の調整 → 測定
- それぞれの役割がある



置子の発生


線型加速器

2010/1/30 (土) 岡山大学

電子の加速

偏向電磁石と四極電磁石 が交互に並ぶ

From Linac 1 GeV

Booster Synchrotron

レーストラック型 周長 396 m

672個のバンチ収容バケット

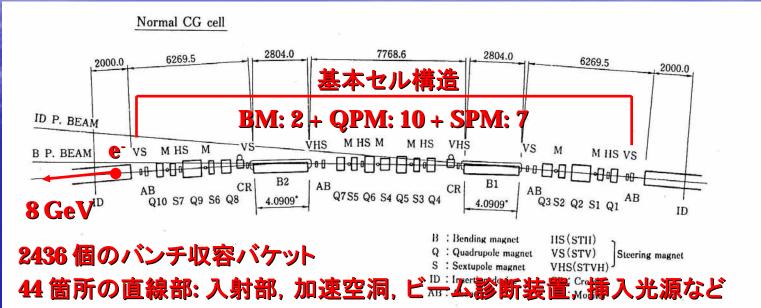
1秒ごとに入射・加速・取り出し

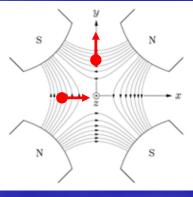
To Storage Ring

RFノックアウト:

8 GeV

隣接する不要なバンチをけり出す


ブースターシンクロトロン



電子の警積

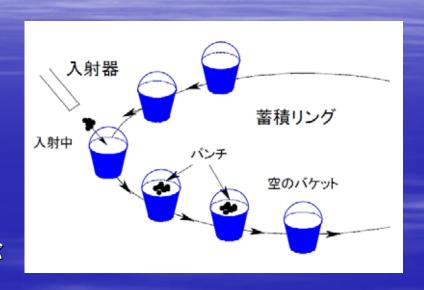
四極電磁石 (QPM)

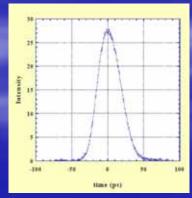
電子の進行方向を揃える(収束作用)

六極電磁石 (SPM)

電子の運動量を補正

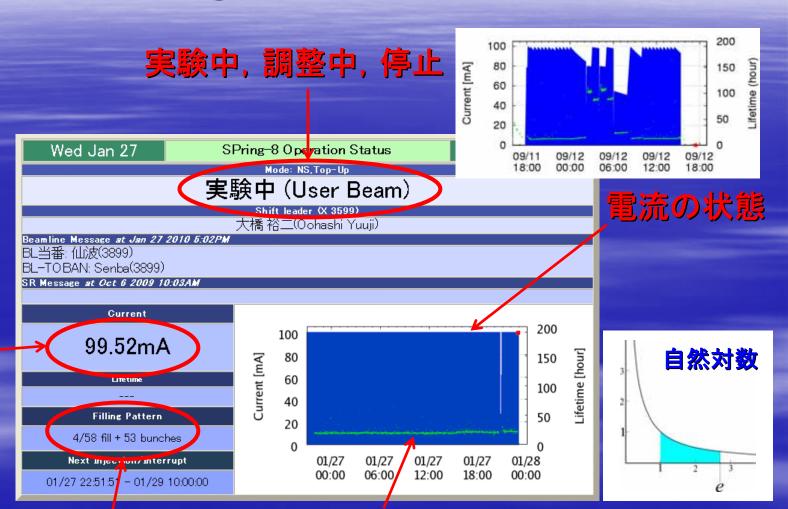
蓄積リング


2010/1/30 (土) 岡山大学



- バンチ (bunch) とは?
 - □電子の塊
 - 1 mA → 3×10¹⁰ 個
- バケット (bucket) とは?
 - 電子が安定に周回する時間領域が ある(高周波加速)
 - バケット数SPring-8: 2436 / APS: 1296 / ESRF: 992
 - □ バンチ間隔: 2.8 ns (距離にして約 85 cm)
- 電子の入射 (Injection) とは?
 - 目的のバケットに電子を打ち込むこと

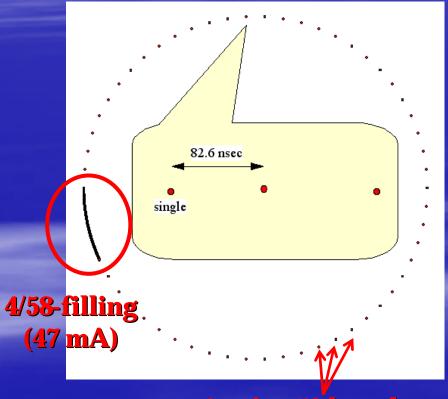
放射光のパルス特性

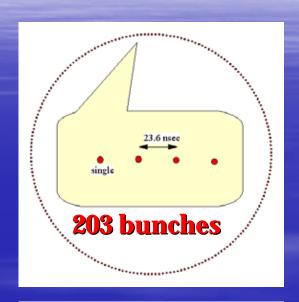


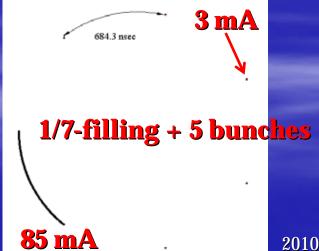
2010/1/30 (土) 岡山大学

SPring-8の運転モード

運転モード


電子の寿命 電流値が 1/e (e ≈ 2.72) になる時間




SPring-8の運転モード

4/58-filling + 53 bunches

1 mA x 53 bunches

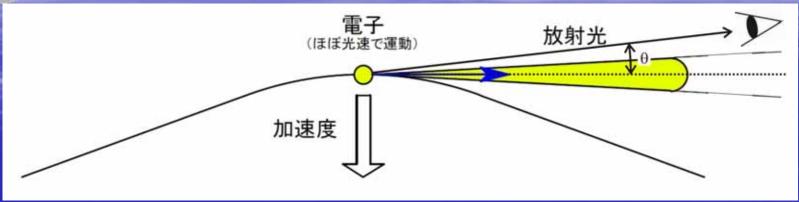
2010/1/30 (土) 岡山大学

蓄積された電子の数

- □ 電流
 - 定義: ある断面を1秒間あたりに通過する電荷の量
- 蓄積電流: *I* = 100 (mA) = 0.1 (A)
- 電子の電荷: e = 1.6×10¹⁹ (C)

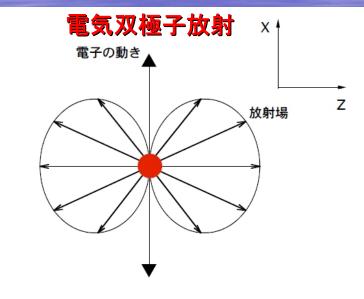
$$I = Ne$$

- 電子の速度: v≈3×10⁸ (m/s)
- 蓄積リングの周長: L = 1435.95 (m)
- ある断面を 1 秒間に通過する電子の数: N = I/e = 6.3×10¹⁷
- □ 1個の電子が1秒間に同じ場所にくる回数: n = v/L = 2.1 × 10⁵
- 蓄積リング中の電子数: m = N/n


$$m = \frac{N}{n} = \frac{IL}{ev} \approx 3 \times 10^{12}$$

3兆個!

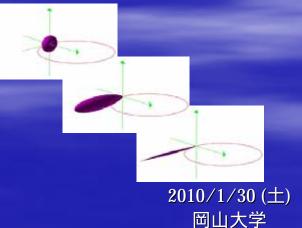
放射光の発生原理


- 光速に近い電子が、曲げられた(進行方向と垂直な方向に加 速された)ときに発生
- 曲げられ方が急なほど、高いエネルギーの光が、より狭い角度 範囲の中に集中する
- 観測者に届く放射光の波長は、ドップラー効果によって短波長 側ヘシフトする $k = \frac{1}{2} \left(\frac{1}{\gamma^2} + \theta^2 \right)$

観測者時間の圧縮率

放射光の発生原理




電子のエネルギーが大きくなる

- → 相対論的効果
- → 放射電場が進行方向に歪む

$$\beta = \frac{v}{c} \qquad \gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

γが大きくなる → 指向性が高くなる

放射光の指向性

- 放射光の指向性~1/γ
- KEK-PF (つくば) の場合
 - 電子エネルギー *E_e* = 2.5 GeV \rightarrow 1/γ≈ 0.2 × 10⁻³ rad = 0.0115°

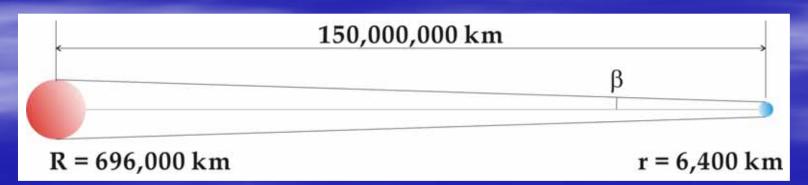
$$\beta = \frac{v}{c} \qquad \gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

$$E = \frac{m_0 c^2}{\sqrt{1 - \beta^2}}$$

- SPring-8 の場合
 - 電子エネルギー $E_e = 8.0 \text{ GeV}$ $\frac{1}{\gamma} = \frac{E_e}{m_0 c^2} = \frac{E_e}{0.511 \text{(MeV)}}$

$$\frac{1}{\gamma} = \frac{E_e}{m_0 c^2} = \frac{E_e}{0.511 (\text{MeV})}$$

SPring-8 が低エミッタンス (角度広がりが小さい) リングといわれる所以!


太陽光は平行光か?

- 放射光の指向性 ~ 1/γ
- **KEK-PF** ($E_e = 2.5 \text{ GeV}$) → $1/\gamma \approx 0.2 \times 10^{-3} \text{ rad} = 0.0115^\circ$
- SPring-8 ($E_{\alpha} = 8.0 \text{ GeV}$) $\rightarrow 1/\gamma \approx 0.6 \times 10^{-4} \text{ rad} = 0.0034^{\circ}$
- 太陽光:

放射光はすごく平行光

$$\tan \beta = \frac{R - r}{L} = 4.6 \times 10^{-3}$$
 $\longrightarrow 2\beta = 9.2 \text{mrad} = 0.527^{\circ}$

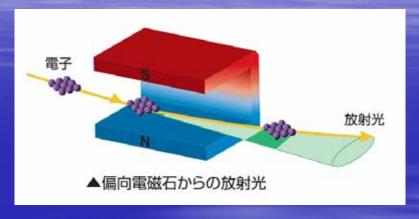
$$\rightarrow$$
 2 β = 9.2mrad = 0.527°

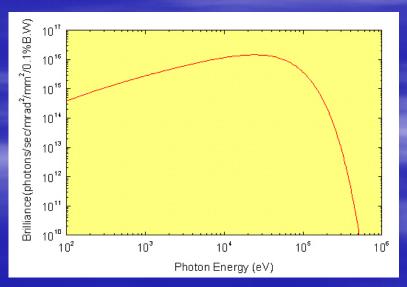
輝度の算出

- 500 nm (= 2.5 eV) の光に対して, 白熱電球とレーザーポインタ の輝度 (photons/sec/mm²/mrad²/0.1%b.w.)を算出
 - ・ 光子数 ≈ 全パワー(W) / (エネルギー(eV) × (1.6×10⁻¹⁹)(C))
 - 輝度 = 光子数 / [(光源サイズ)×(角度広がり)×(エネルギー幅)]

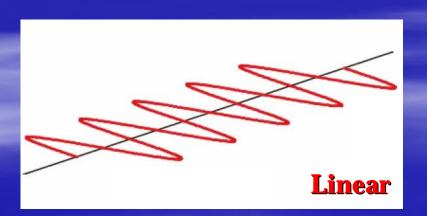
強度	
ĺ	2.5 eV 白熱電球 (100 W)
	レーザーポインタ (1 mW)
	→ 2.5×10 ⁻⁴ eV
	→ エネルギー (eV)
	2.5 2.5

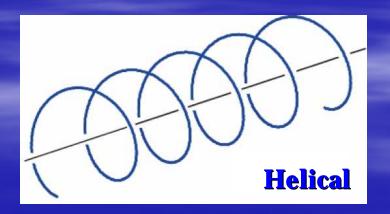
	白熱電球	レーザー
全パワー	100 W	1 mW
角度広がり	$4π$ rad 2	1 mrad²
光源サイズ	10×10 mm ²	1 mm²
エネルギー幅	100 %	0.01 %
輝度	2.0×10^{8}	2.5×10^{16}





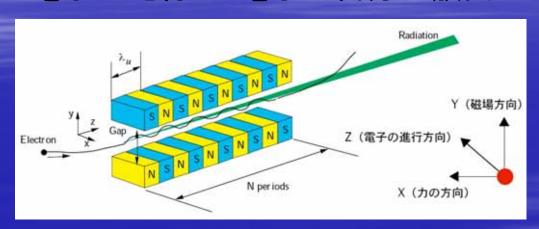
- 電子を曲げる 電子をまわすために必要!
- 放射光を発生する電子を曲げるから放射される!



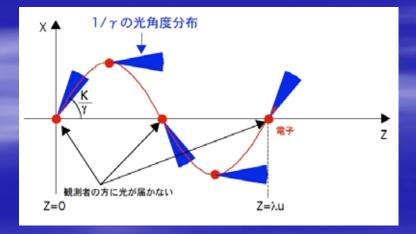


もつと強い光を!

- もっと強い光を発生させるためにはどうすればよいか?
- 曲げまくる!
 - □ 放射光は接線方向に放出 → 単に曲げるだけではダメ
 - 放射光は同じ方向に集中させなければならない
 - → 電子を蛇行させる or くるくるまわす



挿入光源の概念


■ 電子の蛇行 → 電子が自分の放出した電磁波と干渉

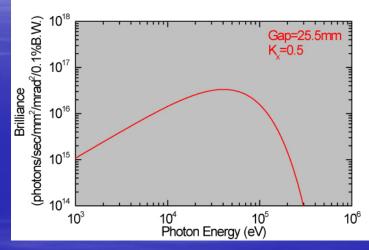
K パラメータ

$$K = \frac{eB_u \lambda_u}{2\pi m_e c}$$

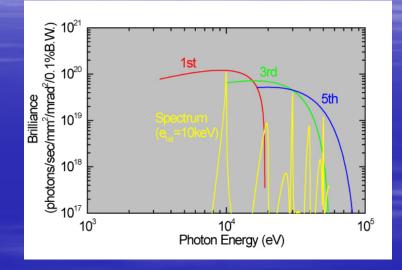
K ~ 1: アンジュレータ K >> 1: ウィグラー

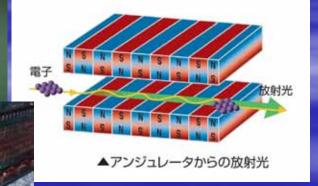
発生するX線の波長

$$\lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right)$$



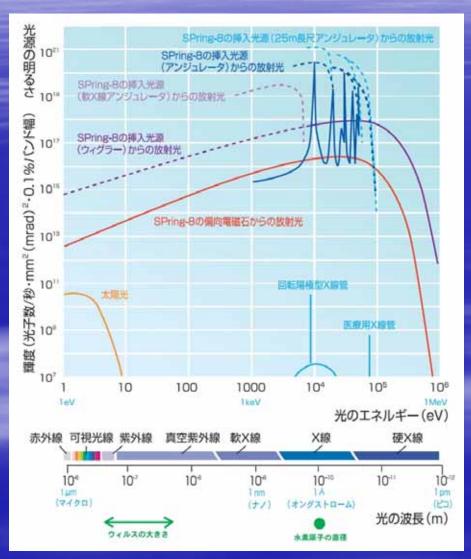
- **■** *K* >> 1: 蛇行幅 大
- 周期数 $N \rightarrow$ 強度 N 倍
- 高エネルギーの高強度X線を 取り出す





アンジュレーダー

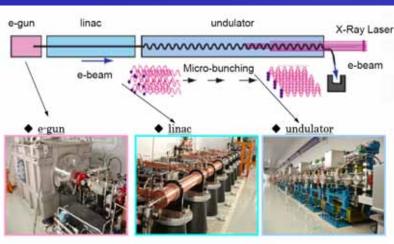
- **■** K~1: 蛇行幅 小
- 周期数 $N \rightarrow$ 強度 N^2 倍


■ 高輝度X線を作り出す

光源の比較

□ 輝度で比較すると...

アンジュレータ光は、実験 室系X線管よりも 10³ ~ 10⁹倍 輝度が高い



- □ SPring-8 のアンジュレータ
 - 周期数 N → 強度 N² 倍
 - 電子数 N 倍 → 強度 N 倍 (個々の電子に相関がない)
 - 空間的なコヒーレンス (可干渉性) は少しある
 - 時間的なコヒーレンスはない

- XFEL のアンジュレータ
 - 空間的・時間的にコヒーレンス
 - 電子数 $N \oplus \rightarrow$ 強度 $N^2 \oplus$
 - 個々の電子に強い相関を持つようになり、アンジュレータ内の電子の位相が揃う
 - SPring-8 アンジュレータ光の 10 億倍の輝度

X線の検出方法


どんなにすごい X 線が発生できても、 それが検出できなければ意味をなさない!

∞線(光)の検出

- ・ 光やX線などの電磁波 → 見えないもの
- 可視光そのものが見えているわけではない!
 - 光と物体との相互作用(散乱)の結果, 目に入って来た光と網膜との相互作用 によって色(波長)を識別している

- 光 or X線の検出 → 物質との相互作用を利用する
 - 基本的に, 電荷の発生, 光(可視光)の放出を利用
 - ・ 光の放出も最終的には電荷の発生を利用 → 電気信号

X線の検出

- 検出器として求められるもの
 - ┗ 何を測るか?
 - 種類 (α線, β線, γ線, X線など)
 - □強度
 - エネルギー (波長)
 - □ 位置 分布
 - タイミング
 - □ 求められる性能
 - □ 応答が速い → 光は~3×10° m/s で進む
 - 電気信号などへの変換効率が高い
 - ノイズが少ない など

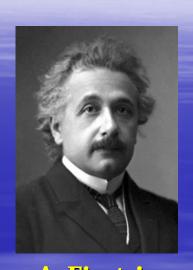
検出器いろいろ

■ 用途によって異なる

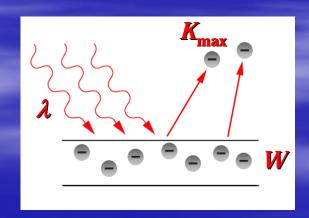
		パルス型	積分•平均型
強度		GM 計数管	イオンチェンバー
			PIN フォトダイオード
位置	1次元	PSPC	
	2次元	PSPC	X線フィルム, CCD
			イメージングプレート
	_		PILATUS
エネルギー		SSD, SDD	
		シンチレーション検出器	
タイミング		APD, MCP,	
		ストリークカメラ	

X線を検出する仕組み

- - 気体: 自由電子 (電離)
 - 固体: 電子-正孔対
- 光 (可視光) の放出:
 - シンチレーターの利用
 - 励起電子のエネルギー遷移による光の放出(蛍光)
- 光と電子の相互作用
 - 光電効果
 - コンプトン効果
 - □ 電子対生成
- 検出するための「素子」や「回路」のアイデア



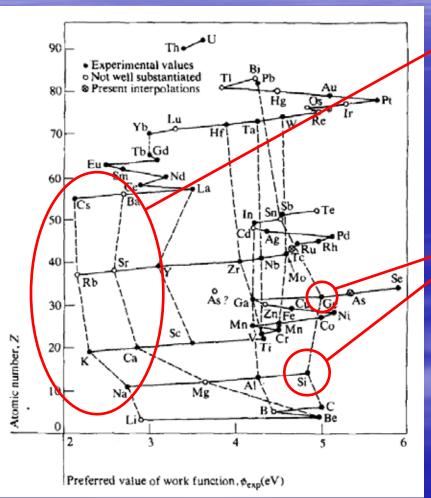
光電効果



- 1887年: H. R. Hertz によって発見
 - 陰極に紫外線照射 → 電極間の放電
- 1888年: W. L. F. Hallwacks
 - ・ 金属に短波長の光を照射 → 電子が飛び出す
- P. Lenard による「光電効果」の詳細な研究
 - 電子の放出エネルギーに閾値
 - 波長を変化 → 電子のエネルギーが変化
 - 強度を変化 → 電子数が変化
- 1905年: A. Einstein による光量子仮説
 - □ 光はエネルギーを持つ粒子

$$\frac{hc}{\lambda} = W + K_{\text{max}}$$

A. Einstein ノーベル物理学賞受賞 (1921)



元素の仕事関数

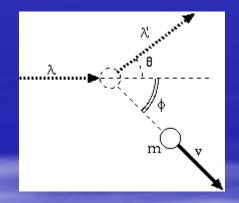
電子が飛び出しやすい

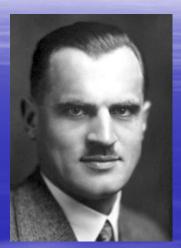
- → 光センサー
 - > CCD
 - > イメージングプレート
 - > 光電子倍増管

安価, 純良な結晶

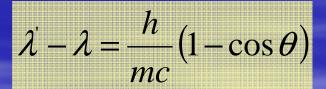
- フォトダイオード
- > CCD
- > 太陽電池

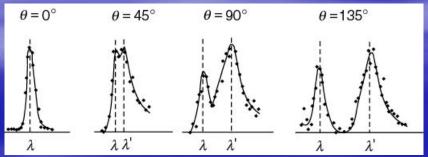
窒素や希ガスなど


> イオンチェンバー



コンプトン効果


- 1923年: A. H. Compton により発見
 - A. Einstein の光量子仮説を証明する ための実験的証拠の1つ



ノーベル物理学賞受賞 (1927)

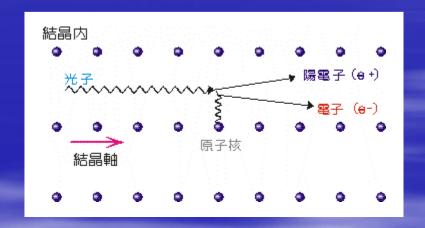
A. H. Compton

コンプトン散乱

> 電子の運動量分布

逆コンプトン散乱

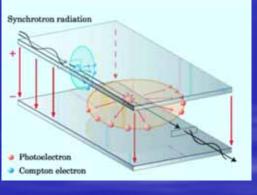
> 素粒子物理, 天体物理

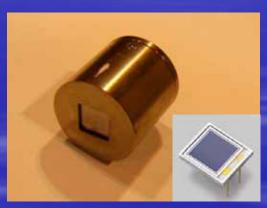

2010/1/30 (土) 岡山大学

置子对生成

- 光のエネルギー E > 1.022 MeV (電子の静止エネルギー×2)
 - → 電子と陽電子を生成, 光子は消滅

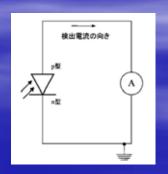
- □ 陽電子消滅: 電子と結合して消滅
 - → 消滅の際に2つの光子 (0.511 MeV) を 180° 方向に放出




X線の強度をモニターする

- イオンチェンバー(電離箱) と PIN フォトダイオード
 - 光電効果を利用 → 電流を測定

PIN フォトダイオード


$$W_{2} = 34.9 \,\mathrm{eV}$$

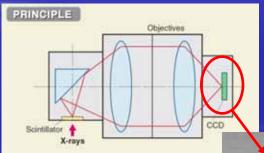
$$W_{\rm Si} = 3.66 \, \rm eV$$

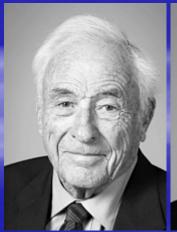
イオンチェンバー

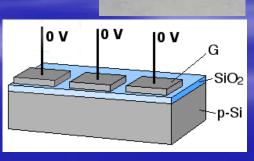
$$I = n \left(\frac{E_{photon}}{W_{Gas}} \right) e \cdot (1 - \exp[-\mu l])$$

$$I = n \left(\frac{E_{photon}}{W_{Si}} \right) e$$

2010/1/30 (土) 岡山大学






- CCD とイメージングプレート
 - 光電効果による電子-正孔対の生成を利用

CCD

空間分解能: ~ 100 μm 時間分解能なし

イメージングプレート

BaFBr:Eu²⁺

電子- 正孔对

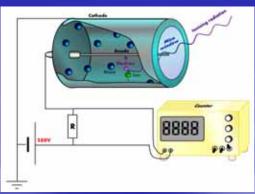
可視光の照射で390 nm (青) の蛍光を放出

空間分解能: < 10 μm 時間分解能はよくない

W. Boyle

G. E. Smith

ノーベル物理学賞受賞 (2009)



- 比例計数管, GM 計数管およびシンチレーション検出器
 - 光電効果によって発生した電子を増幅する

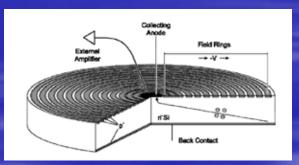
GM 計数管

ガス中の電子衝突による電離によって電子を増幅

シンチレーション検出器

固体の表面・内部での電子の衝突によって(光電子倍増管)電子を増幅

X線のエネルギーを調べる


- **SSD** (Solid State Detector) ≥ SDD (Silicon Drift Detector)
 - P-I-N 接合した半導体の空乏層に電子-正孔対を生成
 - エネルギー分解能: 100~200 eV

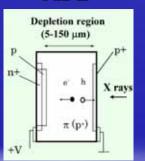
SSD (19素子)

SDD

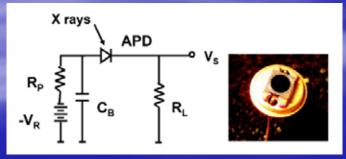
P型 Si から発生した電子を, N型 (アノード) に効率よく 導くように工夫

- ▶ ペルチェ冷却で OK
- ンエネルギー分解能良い
- ➢高計数率

2010/1/30 (土) 岡山大学



X線のタイミングを調べる


- APD (avalanche photodiode) とストリークカメラ
 - 基本的には光電効果: 時間分解能を徹底追及

APD



PIN フォトダイオードに電 圧を印加し、電子を増幅

- > 時間分解能が高い (0.1 ~ 1 ns)
- ➢高計数率

ストリークカメラ

到達時間を空間分布に変換

- > 時間分解能が高い
 - (> 1 ps)
- > 計数率は低い

2010/1/30 (土) 岡山大学

X線を導く(ビームライン)

放射光の発生と検出ができても、 見たいものに当てられなければ意味がない!

- □ 放射光を使いたい状態にする(波長,大きさ,強さなど)
 - □ 光学素子
 - 分光器 (モノクロメーター), 回折格子
 - ミラー、レンズ
 - □ 偏光素子
 - スリット
- 見えない光を, 使いたい場所 (試料位置) へ導くための機器
- □ 安全第一(被爆してはいけない)
 - 光学ハッチと実験ハッチ

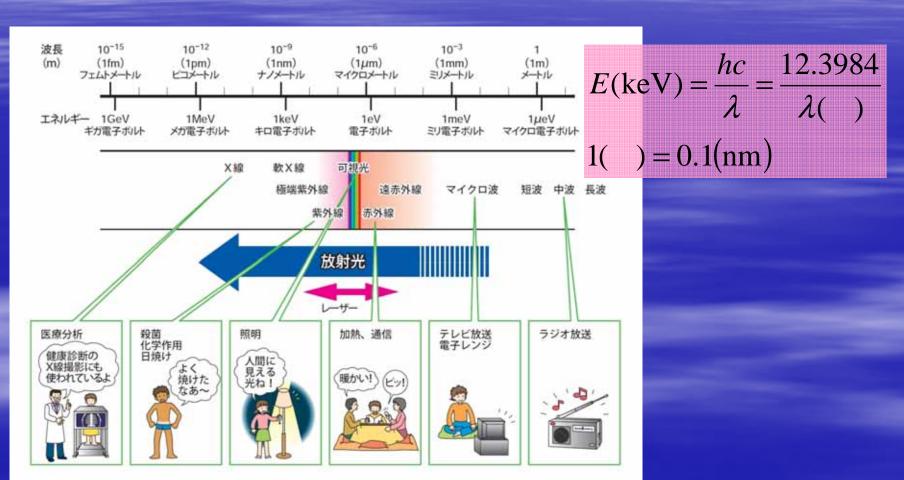
放射線量と人体への影響

放射線量 (mSv)	人体への影響等		
7,000 ~ 10,000	全身被爆: 100% 死亡		
1,000	全身被爆: 10% 悪心, 嘔吐		
500	全身被爆: 末梢血中のリンパ球の現象		
200	全身被爆: これ以下での臨床症状なし		
10	ブラジル・ガラパリ地方の自然放射線 (年間)		
6.9	1 回あたりの CT スキャン		
2.4	自然放射線の世界平均 (年間)		
1.0	一般公衆の線量限度 (年間)	SPring-8: 100 µSv/年以下	
0.6	胃の X 線集団検診 (1回)	2FIIIg-6: 100 µ34/4 1/2	
0.2	東京 – ニューヨーク航空機旅行中の宇宙線 (往復)		
0.05	胸の X 線集団検診 (1回)		

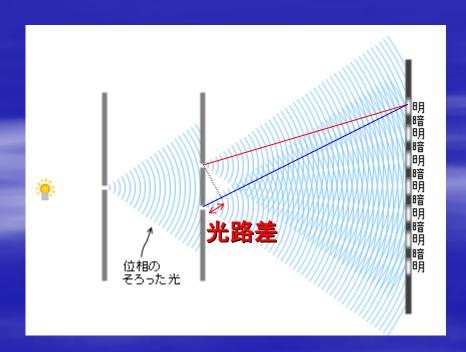
ハッチ (Huctch)

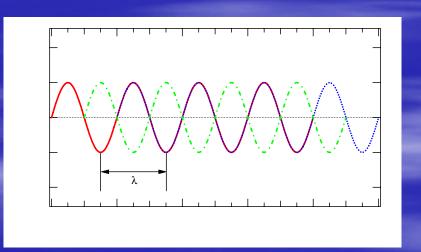
Hueth: ウサギ小屋 Hatch: 出入口, 昇降口

- 硬X線 (3 keV) のビームラインでは、放射光の漏洩防止のため、ハッチが作られる
 - 白色 (色々な波長を含む) か, 単色かで考え方が異なる
- 軟X線のビームラインでは、基本的に必要ない (放射光が最初に当たる光学素子を含む部分にはハッチあり)



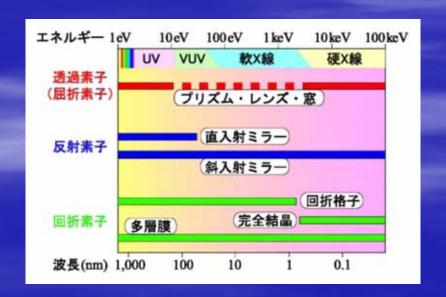
エネルギー (波長)を切り出す



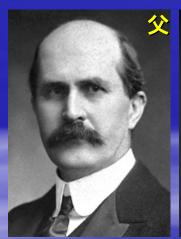


波の予渉

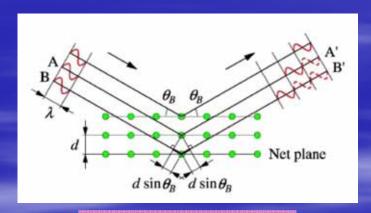
- エネルギー(波長)を切り出す方法 → 波の干渉を利用
- 2つの波の経路 (光路) 差が,
 - 半波長 1/2 の偶数倍: 強めあう
 - 半波長 λ/2 の奇数倍: 打ち消しあう



- モノクロメータ (分光器) の役割
 - 特定の波長 (エネルギー) を切り出す
- 波長によって分光器の種類が異なる
 - 軟X線 (< 3 keV) vs. 硬X線 (> 3 keV)
- 波長変化でビーム位置が変化しない → 定位置出射



硬工線分光器

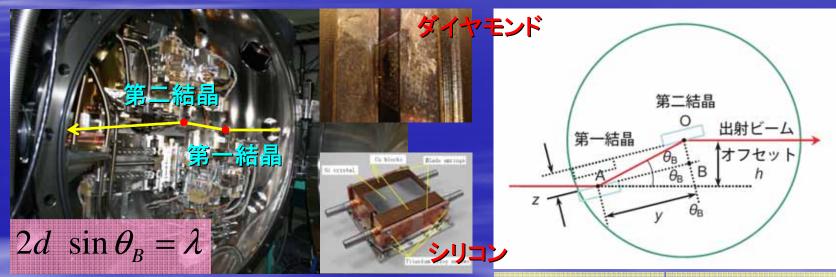


- 結晶による分光: Bragg の法則 (1913)
- 周期的な構造を持つ物質に対して、ある波長 λ (エネルギーE) の光が特定の角度 (θ_R)で強い反射 (光の干渉) を生じる現象.

子

W. H. Bragg W. L. Bragg ノーベル物理学賞受賞 (1915)

$$2d \sin \theta_B = n\lambda$$


史上最年少受賞者(25歳)

硬工線分光器

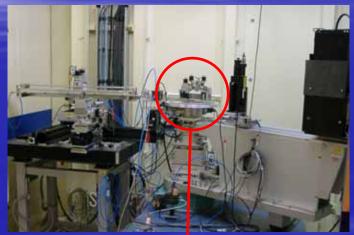
■ 二結晶分光器: 高分解能な単色X線を得るための分光器

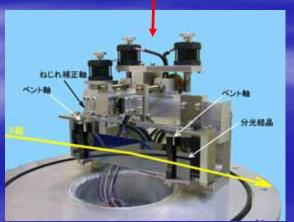
高輝度X線による熱負荷の問題

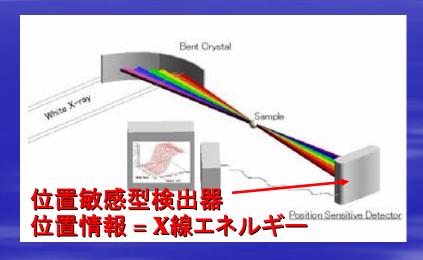
- > SPring-8 偏向電磁石: 1 W/mm²
- > SPring-8 アンジュレータ: 500 W/mm²
- ▶ 家庭用ホットプレート: 0.02 W/mm²
- ✓ シリコン:冷却して熱伝導率を上げる
- ✓ ダイヤモンド: 高い熱伝導率

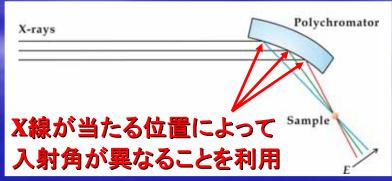
$$y = AB = \frac{h}{2\sin\theta_B}$$
 $z = OB = \frac{h}{2\cos\theta_B}$

定位置出射の原理 回転による高さの変化を並進 (y, z) で補う 2010/1/30(土)

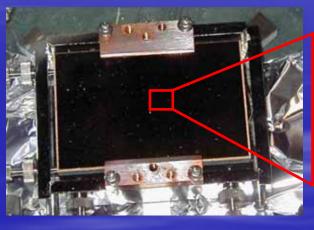

岡山大学

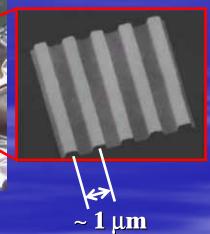


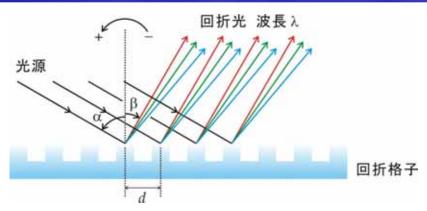

硬工線分光器


SPring 8

■ 波長分散型分光器: スペクトルの一括測定するための分光器






SPring 8

■ 回折格子: 軟X線のための分光器

軟X線領域

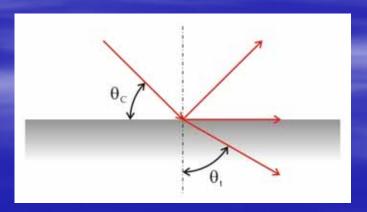
Bragg 条件を満たす結晶がない

→回折格子

分解能: 基板と刻線の加工技術で決まる

$$\sin \alpha + \sin \beta = nm\lambda$$

- ミラーの役割
 - 高エネルギー成分をカット
 - 集光 or 平行化

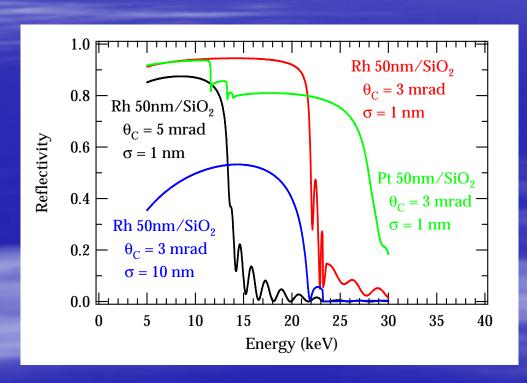

X線の屈折率: 1よりわずかに小さい

$$n=1-\delta$$
 $(\delta << 1)$

屈折 (Snell) の法則

$$\frac{\cos \theta_c}{\cos 0} = \frac{n}{1} \quad \theta_c \approx \sqrt{2\delta}$$

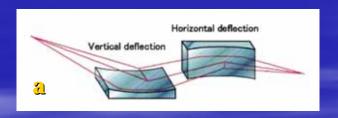
$$\delta \approx 10^5 \rightarrow 斜入射$$

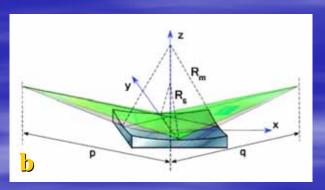


X線を反射する

■ X線の反射率

- ✓ 表面コート材 (元素) で異なる
 - → 重い元素ほど臨界エネル ギーが高くなる
- ✓ 入射角が小さい → 反射率大
- ✓ 表面粗さが粗い → 反射率小

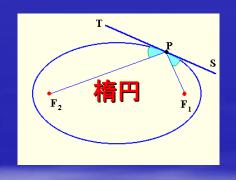

http://henke.lbl.gov/optical_constants/



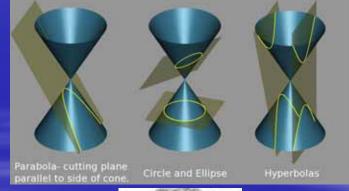
X線を集める (集光)

- 集光の原理
 - 幾何学的には、楕円面、放物面、円筒面で集光可能
 - 2次元の集光
 - a. 2 枚のミラーで 1 方向ずつ集光を行う
 - **b.** 1 枚のミラーで 2 方向の集光を行う

- X線ミラーの問題点
 - 斜入射 → ミラー長が長くなる
 - 形状加工誤差が大きくなる

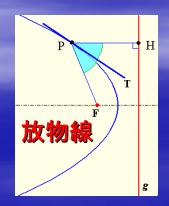


- 楕円と放物線 (円錐曲線)
 - 楕円 → 1 つの焦点から出た光はもう1 つの焦点へ集まる
 - 放物線 → 平行光線は焦点へ集まる



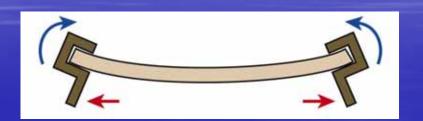
受信機

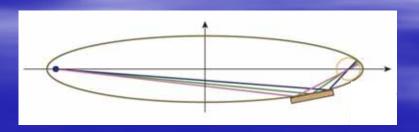
放物線



アポロニウス (B.C.262~190)

 $2010/1/30(\pm)$ 岡山大学

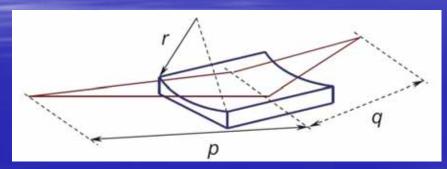




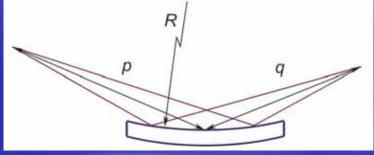
纂光方式

- ミラーの曲げ方
 - 平面ミラーを機械で曲げる
 - 焦点位置を変えられる
 - ■ビームサイズに限界

- ミラーに加工を加えて曲面をつくる
 - ■焦点位置は固定
 - ビームサイズを小さくできる (加工精度に依存)
 - <mark>■</mark> 高さの差: 50 ~ 100 μm



集光方式


■ 集光の方向

サジタル集光:

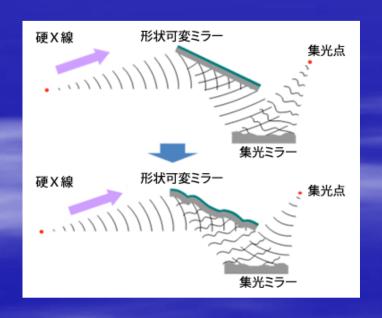
X線の進行方向に対して垂直な方 向を集光する

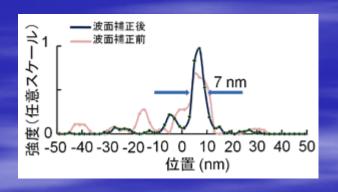
$$r = \frac{2pq}{p+q}\sin\theta$$

タンジェンシャル集光:

X線の進行方向を集光する

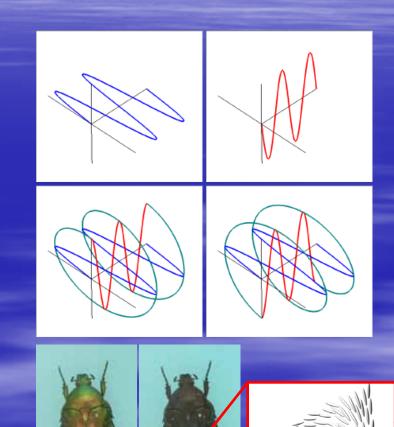
$$R = \frac{2pq}{(p+q)\sin\theta}$$


 $q \rightarrow \infty$: 平行化を意味する

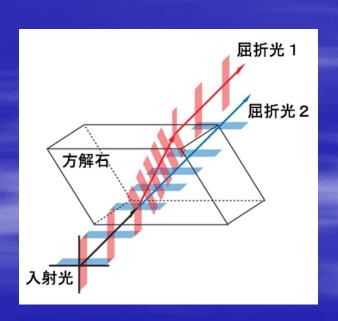


集光の限界に挑戦

- □ 空間分解能を求めて!
 - 回折限界
 - ミラーの場合: フラウンホーファー回折 $F_{dl} = 2 \times 1.24 \ q \ (El_m \sin \theta_i)$
 - ミラー形状誤差 < 0.1 nm, 1 km ビームラインで実施


H. Mimura, *et al.*, Nature Physics, published online on 22 Nov. 2009.0

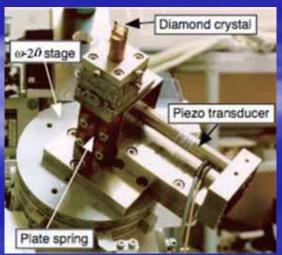
- 偏光とは?
 - 書いて字のごとく、偏った光
 - 波の振動方向が揃っている
- 偏光を利用すると...
 - モノの偏りを調べることができる
- コガネムシ
 - 左円偏光を優先的に反射
 - コレステリック液晶分子の長軸方向 が空間的に回転して配向

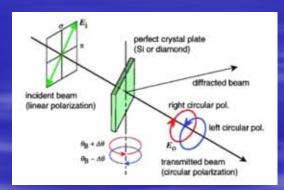


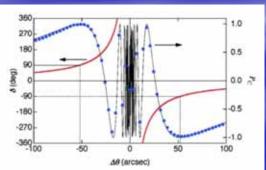
- 移相子とは?
 - 互いに直交した電場の振動成分の位相差を変更する光学素子
 - X線の複屈折現象を利用

複屈折

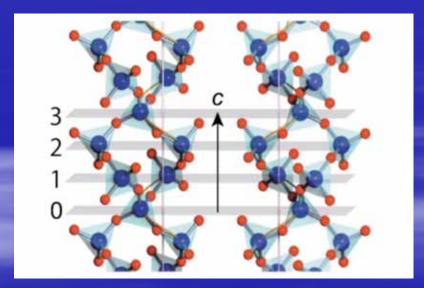
結晶中を進む光の屈折率が偏 光方向によって異なる現象

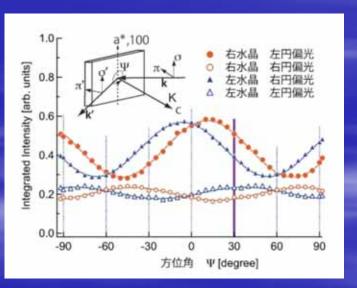



偏光を制御する


- 移相子: 硬X線領域の偏光制御素子 (軟X線領域では、光源からの偏光を利用)
 - ダイヤモンド,シリコン,ゲルマニウムなどの完全結晶を利用
 - 波を2成分に分け、互いに位相差をつける

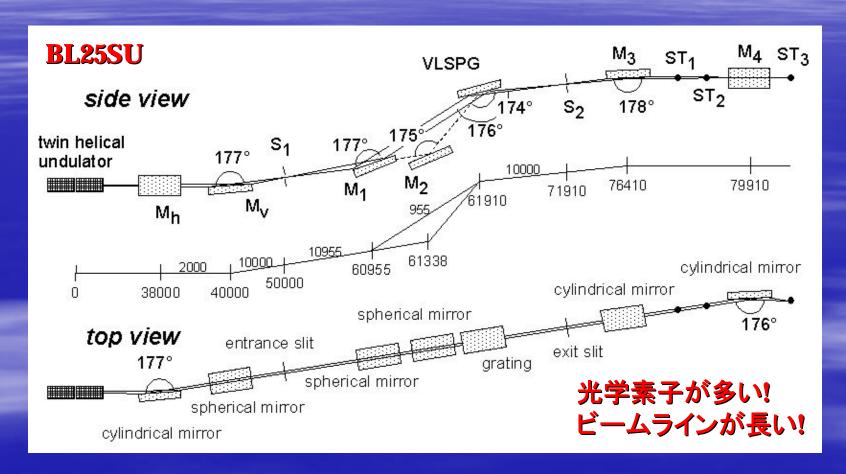
$$\delta = -\frac{\pi}{2} \left[\frac{r_e^2 \operatorname{Re}(F_h F_{\bar{h}})}{\pi^2 V^2} \frac{\lambda^3 \sin(2\theta_{\mathrm{B}})}{\Delta \theta} \right] t = -\frac{\pi}{2} A(\lambda) \frac{t}{\Delta \theta}$$



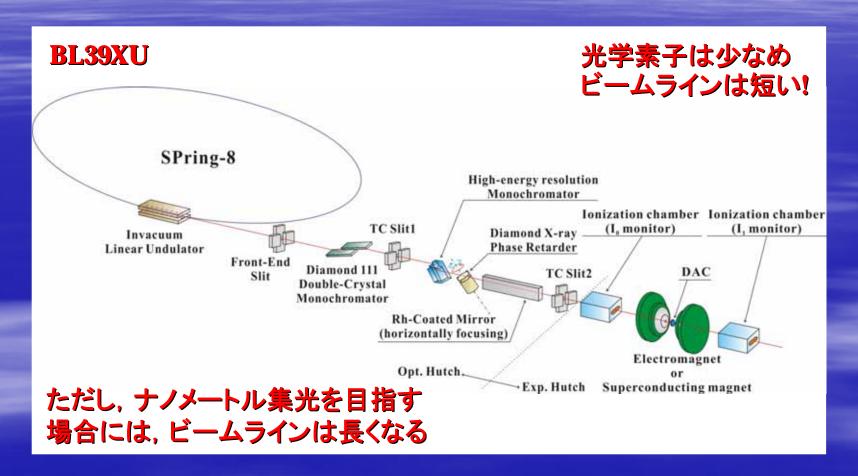


偏光を利用した研究例

- 水晶 SiO₂ のキラリティ解析
 - 左右円偏光を用いたX線回折を共鳴条件で行う
 - 左水晶と右水晶のキラル構造を区別

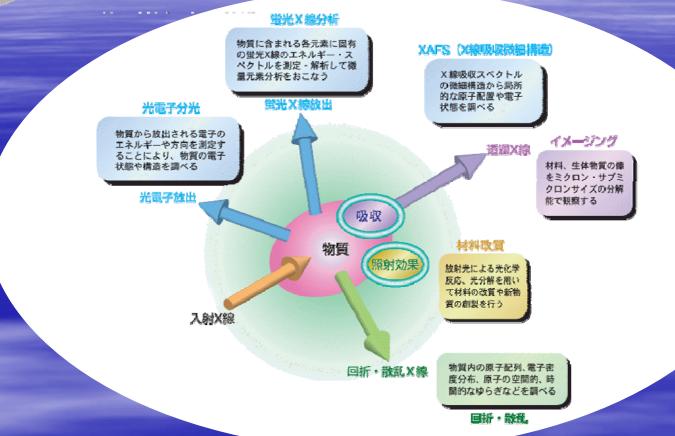


Y. Tanaka, et al., Phys. Rev. Lett. <u>100</u> (2008) 145502.


一般的なビームライン(軟工線)

一般的なビームライン(硬工線)

放射光を利用した研究例

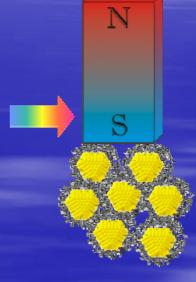

究極のX線計測システムが構築できても、 それを使いこなせなければ意味がない!

X線と物質の相互作用

X線は「電磁波(電気・磁気の波)」の一種

- > 電子などの電荷を帯びたものに対して影響を及ぼす
- ▶ 電子(原子核)を揺さぶって、エネルギーを与える

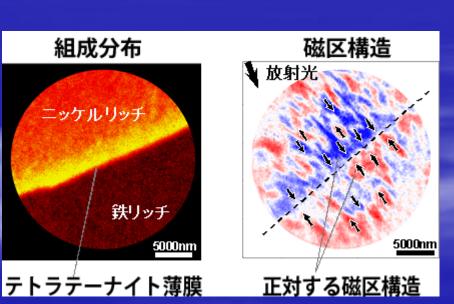
2010/1/30 (土) 岡山大学



物質科学·材料科学

linetendinetry dividendinetendinetry diagraphic political and a standard method

- > 先端材料の原子・電子の構造
- > 極端条件下の材料物性
- > 産業材料の評価
- > 新物質創製と材料改質など



星から生まれる次世代磁気デバイス

- ┗ 隕石中の鉄-ニッケル合金の磁区構造の解明
 - 光電子顕微鏡 (PEEM) による観察
 - 隕鉄: 地球上の鉄-ニッケル合金とは大きく異なる磁性
 - 磁気異方性 (保磁力) が非常に高い → 永久磁石的ふるまい

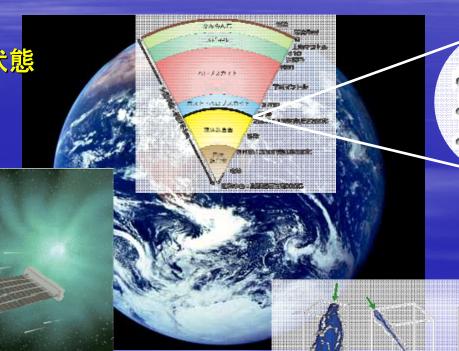
SPring-8 BL25SU / BL39XU

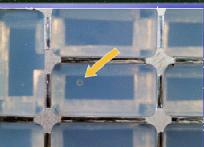
軟X線固体分光/磁性材料ビームライン

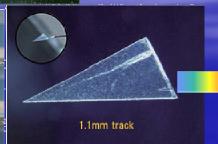
隕鉄の磁区構造の解明

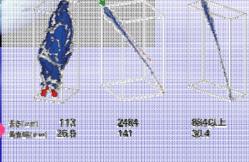
→ 次世代磁気デバイスの創製に期待

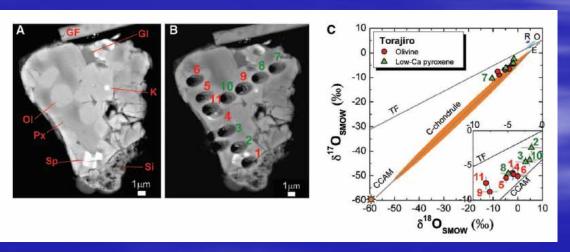
M. Kotsugi, *et al.*, Applied Phys. Exp. <u>3</u> (2009) 013001.




地球科学 宇宙科学




- > 極限環境下の物性
- > 隕石・宇宙塵の構造など



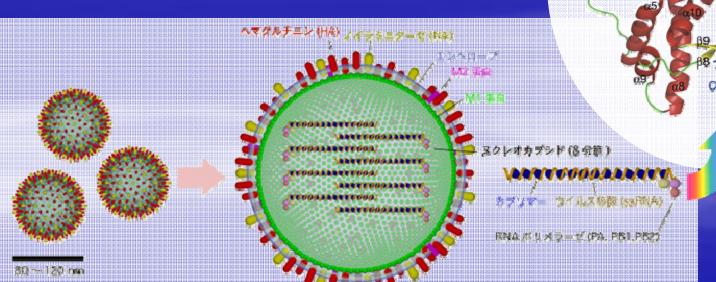
太陽系外縁天体の成り立ちの解明

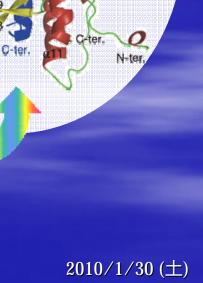
- 太陽系内部の高温領域で形成されたコンドリュールを同定
 - スターダスト探査機が回収した彗星の塵の一部を分析
 - 初期太陽系の中心領域に数多く存在していたコンドリュールと酷似
 - 太陽系外側領域では、内側から飛来した高温物質と、元々その領域に 存在していた低温物質が集合することによって小天体を形成

SPring-8 BL47XU マイクロ CT ビームライン

初期太陽系における高温物質コンドリュールの空間分布に関する重要な知見

→ 新しい太陽系形成モデル の構築に貢献

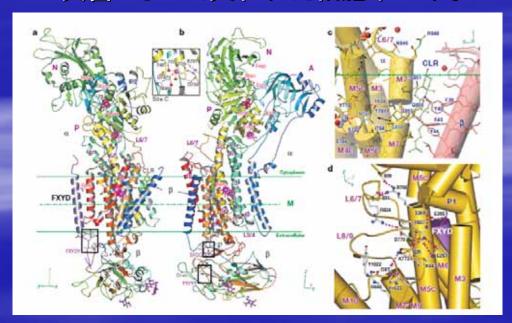

T. Nakamura, et al., Science 321 (2008) 1664.



生命科学

- > たんぱく質巨大分子の3次元構造解析
- > 非結晶生体材料の小角散乱
- > 薬剤設計
- > 新薬開発など

岡山大学


ナトリウム・カリウムポンプの立体構造

- ナトリウム・カリウムポンプ
 - J. C. Skou による発見 → ノーベル化学賞 (1997)
 - 心不全の治療薬ジギタリスの標的分子
 - 神経の興奮などに必須

J. C. Skou

興奮によって失われた細胞中のイオンの濃度さを元に戻す役割

SPring-8 BL41XU 構造生物学Iビームライン

分子構造の解明 → 薬剤の開発に貢献

T. Shinoda, et al., Nature 459 (2009) 446.

(ry'c)

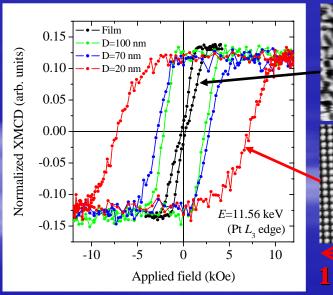
放射光を利用した先端研究

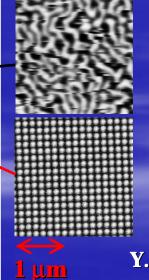
産業利用・環境科学

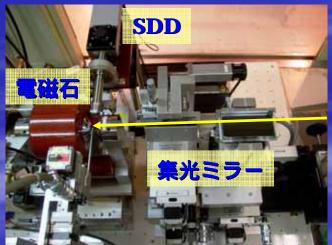
- > 高性能電池材料の局所構造解析
- > 環境浄化触媒の分析
- > 生体試料中の環境汚染微量元素分析など

- ・ナノテクノロジー
- 情報技術(IT)
- バイオテクノロジーの技術発展に貢献

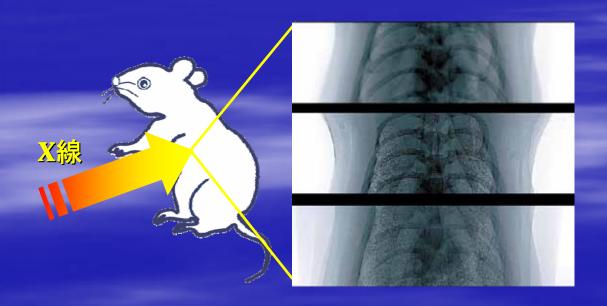
2010/1/30 (土) 岡山大学

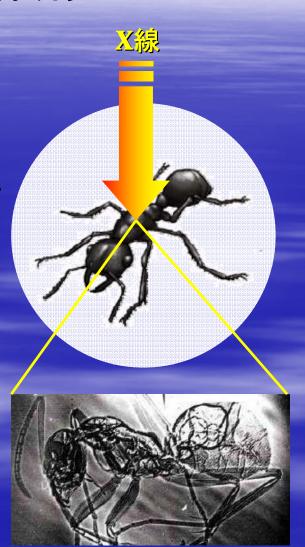



1 Tbit/in² 級ハードディスク媒体の評価


- 次世代ハードディスクの製品化に向けた磁気記録媒体の評価
 - 製品では, 200 Gbit/in² が最高
 - 垂直磁化膜 + ビットパターン形成
 - マイクロビーム形成 + 元素別磁気測定

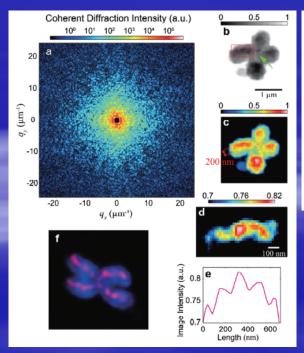
SPring-8 BL39XU 磁性材料ビームライン

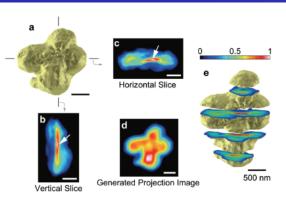

Y. Kondo, et al., Private communication.



医学利用

- ➢ 癌治療を目標とした基礎実験
- > 微小血管造影法による腫瘍血管の観察
- ▶トモグラフィ・屈折コントラスト・影像法による呼吸 器系疾患の観察など





ヒト染色体のX線CT撮影

- 細胞の中を高いコントラストで 3D 観察
 - コヒーレントX線回折を利用
 - ヒト染色体内部の軸状構造を、タンパク質を標識することなく観察
 - 細胞や細胞小器官は薄すぎるため、内部構造の観察が困難

SPring-8 BL29XUL 理研 物理科学 I ビームライン

将来的,XFELによる飛躍的な高分解能化が期待 創薬の鍵を握る膜タンパク質の構造解析が可能 → 細胞生物学,医学上の重要な応用に期待

Y. Nishino, *et al.*, Phys. Rev. Lett. <u>102</u> (2008) 018101.

2010/1/30 (土) 岡山大学

放射光のまとめ(1)

□放射光の発生

- 放射光は、光速に近い電子が磁場によって曲げられ、相対論的効果によって発生する
- 発生した放射光の波長は、ドップラー効果によって極端に短くなる (エネルギーが高くなる)
- **■** 放射光の指向性は,電子エネルギーが大きいほど高くなる
- アンジュレータを通過する電子は、自分の出した光と干渉することによってその強度が増大する

• ビームライン

- □ ビームラインの光学機器は,波の基本法則 (光の波動性) を利用した 概念で設計,配置,調整がなされる
- アンジュレータなどの挿入光源のビームラインでは、その熱負荷が考慮される
- X線が外部に漏洩しないように、光学/実験ハッチが設置されている

放射光のまとめ(2)

□ ※線検出器

X線の検出器は、その利用目的によって、素子形状や回路に創意工夫が見られるが、基本的に光と電子の相互作用(光電効果)を利用したものが用いられる

■ 放射光利用研究

- SPring-8 放射光の特性 (高輝度, 高い指向性, 波長可変性, 偏光特性, パルス性など) を活かした研究が数多くなされ, 成果も上がっている
- 放射光を利用した研究分野は、「物質・材料科学」、「地球・宇宙科学」、 「生命科学」、「産業利用・環境科学」、「医学利用」など、多岐にわたっている

References (1)

- SPring-8 Web Site
 - http://www.spring8.or.jp/ja/
- 甲南大学 刑事訴訟法教室 OnLine
 - http://kccn.konan-u.ac.jp/law-school/online/study/study_01.html
- ┗ サントリー「水育」
 - http://suntory.jp/kids/mizu-iku/study/m007.html
- ウィキペディア フリー百科事典 http://ja.wikipedia.org/wiki/
- Nobelprize.orghttp://nobelprize.org/
- イラストポップ http://illpop.com/menuf.htm
- ASTRO PHOTO CLUB
 - http://www.astrophotoclub.com/
- 第1回日本放射光学会放射光基礎講習会「先端研究開発ツールとしての放射光利用術 http://www.jssrr.jp/lecture_meeting/index2.html
- Google earth http://earth.google.com/intl/ja/
- SALC Linac Coherent Light Source http://lcls.slac.stanford.edu/

- European XFEL
 - http://www.xfel.net/en/
- X線自由電子レーザー (XFEL) 計画合同推進本部
 - http://www.riken.jp/XFEL/jpn/
- 大橋治彦, 平野馨一 編, 放射光ビームライン光学技術入門 (日本放射光学会)
- 大柳宏之編,シンクロトロン放射光の基礎(丸善)
- 物理のかぎしっぽ http://www12.plala.or.jp/ksp/
- JASRI コロキウム
- Cheiron School 2009 http://cheiron2009.spring8.or.jp/
- 浜松ホトニクス http://jp.hamamatsu.com/
- 放射光 Vol. 21 (2008) No.2 Vol. 22 (2009) No. 6, 特別企画 検出器シリーズ
- アナヒータストーンズ
 http://www.anahitastones.com/